Dichloroacetate and Human Skeletal Muscle Metabolism

نویسندگان

  • James A. Timmons
  • Thomas Gustafsson
  • Carl Johan Sundberg
  • Eva Jansson
  • Eric Hultman
  • Lenart Kaijser
  • Jolanta Chwalbinska-Moneta
چکیده

We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879–883). This was thought to be a consequence of dichloroacetate increasing acetyl group availability early during contraction. In this study we characterized the metabolic effects of dichloroacetate in a human model of peripheral muscle ischemia. On two separate occasions (control-saline or dichloroacetate infusion), nine subjects performed 8 min of single-leg knee extension exercise at an intensity aimed at achieving volitional exhaustion in z 8 min. During exercise each subject’s lower limbs were exposed to 50 mmHg of positive pressure, which reduces blood flow by z 20%. Dichloroacetate increased resting muscle pyruvate dehydrogenase complex activation status by threefold and elevated acetylcarnitine concentration by fivefold. After 3 min of exercise, phosphocreatine degradation and lactate accumulation were both reduced by z 50% after dichloroacetate pretreatment, when compared with control conditions. However, after 8 min of exercise no differences existed between treatments. Therefore, it would appear that dichloroacetate can delay the accumulation of metabolites which lead to the development of skeletal muscle fatigue during ischemia but does not alter the metabolic profile when a maximal effort is approached. ( J. Clin. Invest. 1998. 101:79–85.)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased acetyl group availability enhances contractile function of canine skeletal muscle during ischemia.

Skeletal muscle contractile function is impaired during acute ischemia such as that experienced by peripheral vascular disease patients. We therefore, examined the effects of dichloroacetate, which can alter resting metabolism, on canine gracilis muscle contractile function during constant flow ischemia. Pretreatment with dichloroacetate increased resting pyruvate dehydrogenase complex activity...

متن کامل

Effects of dichloroacetate infusion on human skeletal muscle metabolism at the onset of exercise.

This study investigated whether dichloroacetate (DCA) decreases the reliance on substrate level phosphorylation during the transition from rest to moderate-intensity exercise in humans. Nine subjects cycled at ∼65% of maximal oxygen uptake (V˙o 2 max) after a saline or DCA (100 mg/kg body wt) infusion, with muscle biopsies taken at rest and at 30 s and 2 and 10 min of exercise. DCA infusion inc...

متن کامل

Effects of PDH activation by dichloroacetate in human skeletal muscle during exercise in hypoxia.

During the onset of exercise in hypoxia, the increased lactate accumulation is associated with a delayed activation of pyruvate dehydrogenase (PDH; Parolin ML, Spreit LL, Hultman E, Hollidge-Horvat MG, Jones NL, and Heigenhauser GJF. Am J Physiol Endocrinol Metab 278: E522-E534, 2000). The present study investigated whether activation of PDH with dichloroacetate (DCA) before exercise would redu...

متن کامل

Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

Since the mitochondrial pyruvate dehydrogenase complex (PDC) controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D). There are also situations where muscle insulin resistance can occur independently from high...

متن کامل

The importance of pyruvate availability to PDC activation and anaplerosis in human skeletal muscle.

No studies have singularly investigated the relationship between pyruvate availability, pyruvate dehydrogenase complex (PDC) activation, and anaplerosis in skeletal muscle. This is surprising given the functional importance attributed to these processes in normal and disease states. We investigated the effects of changing pyruvate availability with dichloroacetate (DCA), epinephrine, and pyruva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997